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Quantum versus classical phase-locking transition in a frequency-chirped nonlinear oscillator
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Classical and quantum-mechanical phase-locking transition in a nonlinear oscillator driven by a chirped-
frequency perturbation is discussed. Different limits are analyzed in terms of the dimensionless parameters
P1 = ε/

√
2mh̄ω0α and P2 = (3h̄β)/(4m

√
α) (ε, α, β, and ω0 being the driving amplitude, the frequency chirp

rate, the nonlinearity parameter, and the linear frequency of the oscillator). It is shown that, for P2 � P1 + 1,
the passage through the linear resonance for P1 above a threshold yields classical autoresonance (AR) in the
system, even when starting in a quantum ground state. In contrast, for P2 � P1 + 1, the transition involves
quantum-mechanical energy ladder climbing (LC). The threshold for the phase-locking transition and its width
in P1 in both AR and LC limits are calculated. The theoretical results are tested by solving the Schrödinger
equation in the energy basis and illustrated via the Wigner function in phase space.
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I. INTRODUCTION

Autoresonance (AR) is a generic nonlinear phase-locking
phenomenon in classical dynamics. It yields a robust approach
to excitation and control of nonlinear oscillatory systems
by a continuous self-adjustment of systems’ parameters to
maintain the resonance with chirped-frequency perturbations.
Applications of AR exist in many fields of physics, examples
being atomic and molecular systems [1,2], nonlinear optics
[3], Josephson junctions [4], hydrodynamics [5], plasmas [6],
nonlinear waves [7], and quantum wells [8]. Most recently,
AR served as an essential element in the formation of trapped
antihydrogen atoms at CERN [9,10] and in studying the effect
of fluctuations in driven Josephson junctions [11]. While
the classical AR is well understood, the investigation of
the quantum-mechanical limits of the problem has started
only recently [8,11,12]. The present study focuses on the
interrelation between the classical and quantum descriptions
of the autoresonant transition in the simplest case of a driven
Duffing oscillator (modeling a driven diatomic molecule [13]
or a Josephson junction [4], for example) governed by the
Hamiltonian

H = p2

2m
+ mω2

0

(
1

2
x2 − 1

4
βx4

)
+ εx cos ϕd, (1)

where ϕd = ∫
ωddt , ωd = ω0 − αt is the chirped driving

frequency, and α,β > 0. We will assume that initially our
oscillator is in a thermal equilibrium with the environment at
temperature T , but the chirped system’s response is sufficiently
fast to neglect the effect of the environment on the out-of-
equilibrium dynamics [11].

Classically, in autoresonance, after passage through the
linear resonance at t = 0, the driven oscillator gradually
self-adjusts its oscillation frequency to that of the drive by
continuously increasing its energy [14], yielding a convenient
control of the dynamics by variation of an external parameter
(the driving frequency). The transition to the classical AR by
passage through linear resonance has a threshold on the driving
amplitude, scaling as εcr ∼ β−1/2α3/4 [14]. This threshold is
sharp if the oscillator starts in its zero equilibrium, but in

the presence of thermal noise it develops a width, scaling as
T 1/2 [15]. Both the AR threshold and its width have their
quantum-mechanical counterparts, which will be discussed in
this work.

When the problem of autoresonant transition is dealt with
quantum mechanically, two questions must be addressed.
First, what are the differences between the classical and
quantum evolutions of the chirped-frequency driven nonlinear
oscillator? In dealing with this question, Ref. [12] suggested
that the natural quantum-mechanical limit of the classical AR
is a series of successive Landau-Zener (LZ) [16] transitions or
energy ladder climbing (LC), where only two adjacent energy
levels of the driven oscillator are coupled at any given time.
In contrast, the classical AR behavior takes place when many
levels are coupled at all times during the excitation [17]. We
will adopt and further develop this point of view here and
describe different regimes in the problem in terms of two
dimensionless parameters P1 and P2 suggested in [12]. These
parameters are defined via the three physical time scales in the
system, i.e., the inverse Rabi frequency TR = √

2mh̄ω0/ε, the
frequency sweep time scale TS = 1/

√
α, and the characteristic

nonlinearity time scale TNL = (3h̄β)/(4mα) (the time of
passage through the nonlinear frequency shift between the
first two transitions on the energy ladder). Then, by definition,

P1 = TS

TR

= ε√
2mh̄ω0α

(2)

(this parameter measures the strength of the drive), and

P2 = TNL

TS

= 3h̄β

4m
√

α
(3)

(a measure of the nonlinearity in the problem). We will show in
this work that this parameter space describes all limiting cases
of quantum-mechanical evolution in our system, including
quantum initial conditions, the subsequent transition to either
LC or AR, and the associated threshold phenomenon. Note
that P1 and P2 have a meaning only in the case of a system
driven by a chirped frequency, because of the new time scale,
TS , associated with this case.
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The second question, which must be addressed in the
quantum-mechanical formulation of our problem, is that of
quantum fluctuations. As mentioned above, in the presence of
thermal noise, the classical AR transition probability develops
a width, scaling as T 1/2 with temperature [15]. Nevertheless,
at very low temperatures, the quantum fluctuations should be
taken into account. Recent experiments by Murch et al. [11]
demonstrated quantum saturation of the width of the phase-
locking transition in superconducting Josephson junctions at
sufficiently low temperatures, confirming the prediction that
T in the classical width formula [15] should be replaced by an
effective temperature, Teff , where Teff = T for high tempera-
tures and saturates at Teff = h̄ω0/2kB at low temperatures. The
experimental results imply that the fluctuations only determine
the initial conditions of such a nonequilibrium oscillator and do
not affect its time evolution. In this work, we will address the
effect of quantum fluctuations in the AR problem theoretically
and provide further justification of using the classical AR
threshold width formula with T replaced by Teff .

The scope of the paper will be as follows. In Sec. II, we
will use the quantum-mechanical energy basis in the rotating
wave approximation and compare the driven dynamics of our
oscillator in the quantum and classical regimes numerically.
Section III will present the analytic description of the transition
to phase locking in terms of the P1, P2 parameter space in both
classical AR and quantum LC regimes. In the same section,
the theory will be compared with numerical simulations.
Section IV will focus on the effect of quantum fluctuations
on the width of the phase-locking transition. Finally, we
will address the phase-space dynamics in the problem in
Sec. V by solving the quantum Liouville equation for the
Wigner function numerically and compare the phase-space
evolution with that in the energy basis. Our conclusions will
be summarized in Sec. VI.

II. CHIRPED-FREQUENCY DYNAMICS
IN THE ENERGY BASIS

We write the wave function of the oscillator governed by
Eq. (1), |ψ〉 = ∑

n cn|ψn〉, in the energy basis |ψn〉 of the
undriven (ε = 0) Hamiltonian (1). The associated Schrödinger
equation yields

ih̄
dcn

dt
= Encn + ε̃√

2
(
√

n + 1cn+1 + √
ncn−1) cos ϕd, (4)

where we approximate the energy levels [18],

En ≈ h̄ω0[n + 1/2 − βq(n2 + n + 1/2)], (5)

n = 0,1,2, . . ., βq = 3βh̄

8mω0
, and ε̃ = ε

√
h̄

mω0
. We assume a

weak coupling, ε̃ � E0, and, consequently, neglect the non-
linear correction of order ε̃βq/h̄ω0 in the coupling term.
Next, we define Cn = eiωnt cn, where ωn = En/h̄, substitute
this definition into Eq. (4), and neglect the nonresonant terms
(rotating wave approximation) to get

ih̄
dCn

dt
≈ ε̃

2
√

2
(
√

n + 1Cn+1e
−i(ωn,n+1t−ϕd )

+√
nCn−1e

i(ωn−1,nt−ϕd )), (6)

where ωn,n+1 = ωn+1 − ωn = ω0 − 2ω0(n + 1)βq . Finally,
we introduce Bn = Cne

−i
∫

γndt , where γn = nαt − n(n + 1)
ω0βq , and the dimensionless slow time τ = √

αt , associated
with the change τ 2/2 of the driving phase due to the driving
frequency chirp. Then Eq. (6) can be written as

i
dBn

dτ
= 
nBn + P1

2
(
√

n + 1Bn+1 + √
nBn−1), (7)

where 
n = n[τ − (n + 1)P2/2], and P1 = ε/
√

2αh̄ω0m,

P2 = 2ω0βq/
√

α, as defined in the Introduction. Note that
P1 characterizes the strength of the coupling between the
adjacent levels, while P2 is associated with the nonlinearity
in the problem and determines the degree of classicality in the
system (see Sec. V). Note also that the rotating frame here
is chirped instead of the usual, fixed frequency frame and,
thus, there remains an explicit time dependence in Eq. (7).
Our goal is to analyze these slow evolution equations, but first
we discuss different limits in the driven system in P1 and P2

parameter space.
The comparison between the classical AR and the quantum

LC regimes was first discussed by Marcus, Friedland, and
Zigler [12], who suggested the nonlinear resonance classicality
criterion, P2 � P1, by requiring that the classical resonance
width would include more than two quantum levels. Since the
chirp rate cancels from this criterion, the latter characterizes
the nonlinear resonance phenomenon in the system driven by
constant frequency drive as well. The chirping introduces a
new effect, i.e., a possibility of a continuous self-adjustment
of the energy of the oscillator to stay in resonance with the
drive. This yields a new condition, separating the classical
AR and quantum LC transitions, where the dynamics of the
chirped system is very different. In the LC transition, only two
levels are coupled at a time and the system’s wave function
climbs the energy ladder by successive LZ transitions [16]. For
example, Eq. (7) yields the following two-level transformation
matrix for the n − 1 → n transition:(

(n − 1)τ − n(n−1)
2 P2

√
n

2 P1√
n

2 P1 nτ − n(n+1)
2 P2

)
. (8)

We can calculate the time of the nth transition, τn, by equating
the diagonal elements in this matrix, i.e. τn = nP2, so the time
interval between two successive transitions is �τ = P2. On
the other hand, the typical duration �τLZ of each LZ transition
has two distinct limits [19]. In the nonadiabatic (sudden) limit
(P1 � 1), �τLZ is of the order of unity, while in the opposite
(adiabatic) limit, �τLZ ∼ P1. Therefore, by comparing �τ

and �τLZ, we expect to see well-separated successive LZ
steps, i.e., the LC, provided P2 � P1 + 1, which describes
both the sudden and the adiabatic limits. In contrast, the
classical AR transition requires P2 � P1 + 1, which coincides
with the nonlinear resonance classicality criterion mentioned
above, when P1 � 1. In Sec. V, a different argument will be
suggested to explain why classical mechanics yields the correct
description of the transition to autoresonance when a stronger
inequality, P2 � 1, is satisfied, even when the system starts
in the quantum-mechanical ground state. Next, we discuss
the numerical solutions of the problem and compare different
regimes of chirped-driven dynamics.
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FIG. 1. (Color online) Dynamics in the energy basis [(a)–(d)] and the corresponding phase-space dynamics of the Wigner function [(e)–(h)]
in the quantum ladder climbing regime, P2 = 8. The subplots correspond to times τ = 0 [(a), (e)], 30 [(b), (f)], 60 [(c), (g)], and 90 [(d), (h)].
Only a single level is highly populated in the phase-locked group of levels. The dashed lines in subplots (e)–(h) are the separatrices of the
external potential well. The dimensionless phase-space coordinates are rescaled as ξ =

√
βx̄ and υ =

√
βu.

We have solved Eq. (7) numerically, subject to ground-
state initial conditions Bn(τ0) = δn,0 at τ0 = −8 (the linear
resonance corresponds to τ = 0). Each of the Figs. 1–3

corresponds to a different value of the nonlinearity parameter
P2 and shows the distribution of the population of the levels
in the system at four different times [subplots (a)–(d)]. The
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FIG. 2. (Color online) Dynamics in the energy basis [(a)–(d)] and the corresponding phase-space dynamics of the Wigner function [(e)–(h)]
in the intermediate regime, P2 = 1. The subplots correspond to times τ = 0 [(a), (e)], 8 [(b), (f)], 16 [(c), (g)], and 24 [(d), (h)]. Few levels are
simultaneously excited in the phase-locked group in the intermediate regime. The dashed lines in (e)–(h) are the separatrices of the external
potential well. The dimensionless phase-space coordinates are rescaled as ξ =

√
βx̄ and υ =

√
βu.
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FIG. 3. (Color online) Dynamics in the energy basis [(a)–(d)] and the corresponding phase-space dynamics of the Wigner function [(e)–(h)]
in the classical AR regime, P2 = 0.2. The subplots correspond to times τ = 0 [(a), (e)], 4 [(b), (f)], 8 [(c), (g)], and 12 [(d), (h)]. Many levels are
excited in the phase-locked group. The dashed lines in (e)–(h) are the separatrices of the external potential well. The dimensionless phase-space
coordinates are rescaled as ξ =

√
βx̄ and υ =

√
βu.

subplots (e)–(h) in the figures show the associated Wigner
distributions (see Sec. V) at the same times. Figure 1 shows
the case of the LC dynamics for P2 = 8 and P1 = 0.8 at
τ = 0, 30, 60, and 90 [subplots (a)–(d)], and illustrates a
clear time separation beyond the linear resonance between the
successive LZ transitions. For example, we observe two groups
of resonant and nonresonant levels at τ = 90, separated by a
valley centered at about n = 6. We find that the location of the
resonant levels is determined by the slow time, i.e., n ≈ τ/P2,
as shown above. Thus the resonant (phase-locked) state in
the system is efficiently controlled via the driving frequency
and a given final state can be reached (and maintained)
by terminating the frequency chirp at the desired energy
level. We also see that there exists a single highly occupied
level in the resonant group of levels at any given time,
indicating successive LZ transitions, as expected in the LC
regime.

Our second numerical example is presented in Fig. 2 and
illustrates the intermediate regime (as discussed above) with
P1 = P2 = 1 and τ = 0, 8, 16, and 24 [subplots (a)–(d)]. As
in Fig. 1, a clear separation between the resonant (n < 5)
and nonresonant (n > 20) groups of levels is seen in the
figure. We see that, typically, several levels are excited in
the resonant group, but their number is small, so the driven
dynamics cannot be considered as classical. The last example
(see Fig. 3) corresponds to the classical regime, P2 = 0.2,
P1 = 1.9, and τ = 0, 4, 8, and 12. One observes a separation
between resonant and nonresonant groups at τ = 12. Note
that, in all our numerical examples, only about 50% of the
initial state is transferred to the continuing phase-locked state,
leading to the question of resonant capture probability, which
is discussed next.

III. RESONANT CAPTURE PROBABILITY

A. Threshold for phase-locking transitions

For a given set (P1,P2), we define the resonant capture
probability,

P =
∞∑

n=nc

|Bn|2 , (9)

where nc is the number of the level separating the resonant
and nonresonant groups of levels at sufficiently large times.
For a given value of P2, the probability P depends on the
driving parameter, P1. For example, in the case in Fig. 1, we
use nc = 6 and the resonant capture probability is P = 0.48.
Similarly, in the two examples in Figs. 2 and 3, we choose
nc = 10, 40 to get P = 0.62, 0.66, respectively.

We calculate the resonant capture probability by solving
Eq. (7) numerically subject to initial conditions, Bn(τ0) = δn,0

(the ground state), for different values of P1 and P2 and
τ0 = −10. For a fixed P2, the capture probability P is a
monotonically increasing, smoothed step function of P1. We
define the threshold for efficient phase-locking transition,
P cr

1 , as the value of P1 for 1/2 capture probability, i.e.,
P (P cr

1 ) = 0.5. The full circles in Fig. 4 show P cr
1 for different

values of P2. The dashed and dashed-dotted lines are the
asymptotic theoretical predictions for the quantum LC and
classical AR (see below), which agree with the results of
our simulations in both limits. The line P2 = P1 + 1 is the
separator between the classical and the quantum regimes of the
chirped nonlinear resonance, as discussed in Sec. II. This line
crosses the threshold line P cr

1 at (P1,P2) ≈ (0.8,1.8). One can
see in the figure that, indeed, this point separates very different
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FIG. 4. (Color online) Different regimes of phase-locking tran-
sition in the chirped oscillator. The full circles show the location
of the numerical 1/2 resonant capture probability (the threshold for
the phase-locking transition) obtained by solving the Schrödinger
Eq. (7) subject to an initial condition in the ground state. The dashed
and dashed-dotted lines represent the theoretical thresholds in the LC
and AR regimes, respectively. The line P2 = P1 + 1 separates the
classical AR and the quantum LC regimes.

dependences of P cr
1 on P2 associated with the quantum and

classical dynamics of the chirped system. One can also see
the oscillating pattern of the threshold P cr

1 at 1 < P2 < 5,
where the transition to phase locking involves a mixture of
LC and multilevel LZ steps. Next, we calculate the threshold
for phase-locking transitions analytically.

B. Quantum-mechanical ladder climbing

In the quantum LC regime, the nonlinearity parameter P2

determines the time interval between successive resonances
[see Eq. (8)]. In the case of a strong nonlinearity, at any
given time only two levels are coupled, and the dynamics
can be modeled by successive LZ transitions. In this case, we
can calculate the probability of each transition separately and
multiply the probabilities. The two level transformation matrix
(8) in the energy basis for the n − 1 → n transition yields the
transition probability via the LZ formula [16]

Pn−1→n = 1 − rn, (10)

where r = e− π
2 P 2

1 . We define the probability P for capture
into resonance in this case as the probability of occupying
a sufficiently high energy level N after N successive LZ
transitions, i.e.,

P =
N∏

k=1

(1 − rk). (11)

Then, solving P (r) = 0.5, one finds the threshold for the LC
transition,

P cr
1 = 0.79, (12)

where, for two digit accuracy, we used N = 5 in the rapidly
converging product (11). Thus the capture into resonance

occurs in the first few LZ transitions and one can choose nc = 5
(see Fig. 1) in the definition Eq. (9) for calculating the capture
probability near the threshold. This prediction is valid for large
P2, as mentioned above. The dashed line in Fig. 4 represents
Eq. (12), while the numerical result for 1/2 capture probability
is shown by full circles. One can see a very good agreement
between the two results in the LC limit (P2 > 5). However, in
the intermediate regime (1 < P2 < 5), oscillations in P cr

1 are
observed before convergence at the predicted LC line. These
oscillations are due to the mixing of more than two neighboring
levels in passage through resonance (see Fig. 2).

C. Classical autoresonance

As P2 decreases, a growing number of levels are coupled
simultaneously and the dynamics becomes increasingly clas-
sical. The classical AR phenomenon is now well understood
[14]. If one starts in the zero amplitude equilibrium, the
autoresonant phase locking is achieved for drives of amplitude
ε above the critical value εcr = 1.34α3/4β−1/2mω

1/2
0 [14].

When expressed in terms of P1 and P2, this classical threshold
is translated into

P cr
1 = 0.82/

√
P2. (13)

When thermal fluctuations are included, the transition proba-
bility develops a width scaling as T 1/2 with temperature [15].
At the same time, the threshold for 1/2 capture probability
remains the same. Thus P cr

1 in Eq. (13) is the classical
counterpart of the quantum-mechanical observable P cr

1 in
Eq. (12). This classical threshold is shown in Fig. 4 by
a dashed-dotted line, illustrating excellent agreement with
simulations (full circles) in the classical regime, P2 � 1. It
should be emphasized that the simulation results in the figure
are solutions of the quantum-mechanical equations (7) with
parameters in the classical regime, while the probabilities of
capture were calculated using the proper transition level nc for
each value of P2, as defined in Eq. (9). In the next section, we
discuss the width of the autoresonant transition.

IV. WIDTH OF THE PHASE-LOCKING TRANSITION

Another observable of the phase-locking transition men-
tioned above is the width of the transition, which we define as
the inverse slope (∂P/∂P1)−1 of the phase-locking probability
at P = 1/2. This width depends on the initial conditions
governed by the thermal equilibrium with the environment.
Classically, the thermal width of the autoresonant transition
scales as [15]

�ε = 1.23
√

αmkBT . (14)

However, at very low temperatures, the classical thermal
noise becomes negligible, but quantum fluctuations remain.
Recent experiments in Josephson circuits [11] demonstrated
quantum saturation of the transition width at the value obtained
from Eq. (14), but with kBT replaced by the energy h̄ω0

2
of the ground level. More generally, it was suggested to
calculate the width by replacing T in the classical formula by
an effective temperature, Teff = h̄ω0

2kB
coth( h̄ω0

2kBT
), in agreement

with the experimental results. Using Teff , we can translate
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Eq. (14) into the transition width in terms of P1 ,

�P cl
1 = 1.23

√
kBTeff/2h̄ω0, (15)

yielding

�P cl
1 = 0.61 (16)

in the zero temperature limit. The Josephson circuit exper-
iments [11] were performed with P2 = 0.000 53, i.e., well
inside the classical region (see Fig. 4). Interestingly, these
experiments allowed us to characterize the initial quantum
“temperature” Teff of the system by measuring the final
classical autoresonant state of the chirped excitation. We will
justify this approach in the next section by analyzing the
dynamics of the associated Wigner function in phase space.
In contrast to Eq. (15) being valid when the final state of
the system is classical (P2 � 1), the threshold width of the
phase-locking transition in the LC regime (P2 � 1) can be
calculated by evaluating the slope of P (P1) from Eq. (11) at
P1 = P cr

1 = 0.79, yielding

�P
qm
1 = 0.66, (17)

where we assume that the system is in the ground state
initially. Figure 5 summarizes our theoretical predictions
for the width of the phase-locking transition (for the same
parameters as in Fig. 4) and compares them with those from
numerical simulations via the Schrödinger equation (7). We
see a good agreement in both the AR and LC limits, but notice
significant oscillations of the width in the intermediate range
of P2. Remarkably, while the thresholds in the classical and
quantum-mechanical limits have very different scalings, the
widths of the transitions are nearly the same.

V. CHIRPED DYNAMICS IN PHASE SPACE

Phase-space dynamics comprises a convenient framework
for comparison between classical and quantum evolution of
the system. The Wigner function is one of the most useful
phase-space representations of the quantum mechanics, since
it reduces to the classical phase-space distribution in the limit
of h̄ → 0. In this section, we will study the dynamics of the
Wigner function in our chirped oscillator problem in both the

fixed and the rotating frames and discuss the transition to the
classical limit in the problem.

A. Wigner dynamics in the fixed frame

The Wigner function f (x,u,t) associated with the one-
dimensional Hamiltonian of form H (x,p) = p2

2m
+ V (x,t) is

governed by the quantum Liouville equation [20],

∂f

∂t
+ u

∂f

∂x
− 1

m

∂V

∂x

∂f

∂u
=

∞∑
l=1

(−1)l
(

h̄
2m

)2l

m(2l + 1)!

∂2l+1V

∂x2l+1

∂2l+1f

∂u2l+1
,

(18)
where u = p/m and we neglect possible decay and decoher-
ence processes. We take a low-temperature limit, neglect the
nonlinearity initially, and assume that the initial state of the
system is in equilibrium with the environment, i.e. [20],

f0(x,u) = mω0

2πkBTeff
e
− mω2

0x2+mu2

2kB Teff , (19)

where Teff = (h̄ω0/2kB) coth(h̄ω0/2kBT ) is the effective tem-
perature. Note that Teff → T at high temperatures, while
Teff → h̄ω0/2kB at T → 0.

In the case of interest, the potential is a quartic [see Eq. (1)]
and, therefore, only one term survives in the right-hand side of
Eq. (18), allowing us to rewrite this equation in the following
dimensionless form:

∂f

∂t
+ u

∂f

∂x
− ∂V

∂x

∂f

∂u
= γ 2βx

4

∂3f

∂u3 , (20)

where x = x/L, u = u/ω0L, L =√
kBTeff/mω2

0, γ = h̄ω0/

kBTeff , β = βL2,

V = 1
2x2 − 1

4βx4 + εx cos ϕd, (21)

and ε = ε/mLω2
0. In addition, we measure time t in Eq. (20)

in units of ω−1
0 and introduce the dimensionless chirp rate α =

α/ω2
0. With this rescaling, the initial Wigner distribution (19)

becomes f0 = (2π )−1 exp[−(x2 + u2)/2]. We solved Eq. (20)
numerically with the same parameters as in the Schrödinger
simulations and show the results in Figs. 1–3 [subplots (e)–(h)]
at the same times for comparison. For a better representation
of the Wigner distributions for different nonlinearities, we
rescaled the u,x axis in the figures to υ =

√
βū and ξ =

√
βx̄.

The dashed lines in the figures are the separatrices, enclosing
all bounded classical trajectories in phase space. We started
all these simulations in the ground state, i.e., γ = 2, at the
initial time τ0 = −8. Figure 1 compares the dynamics in phase
space to that in the energy basis in the quantum LC regime
(P2 = 8), using the parameters α = 6.25 × 10−7, β = 0.0042,
and ε = 0.013. The pattern seen near the origin in Fig. 1 is
due to the quantum interference with a finite number of states
in the nonresonant region. Figure 2 shows the intermediate
(P2 = 1) case for parameters α = 10−4, β = 0.0067, and
ε = 0.02. Finally, Fig. 3 corresponds to the classical AR case
(P2 = 0.2) and the parameters α = 10−4, β = 0.0013, and
ε = 0.038. As is well known [21], in the near-classical case,
the Wigner function becomes oscillatory on increasingly fast
phase-space scales. However, if coarse grained (due to a finite
numerical accuracy in our case), the Wigner function becomes
almost everywhere positive as one approaches the classical
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distribution function, despite the initial quantum-mechanical
ground state used in the simulations. The evolution of the
Wigner function in the last example is nearly classical with the
quantum signature entering only via the effective temperature
h̄ω0
2kB

of the initial state. In the classical formula (14) for
the transition width, T appears due to integration over the
classical Maxwell-Boltzman distribution function (see [15]).
Therefore, for the quantum-mechanical initial conditions, we
should integrate over the Wigner function in a thermal state
instead of over the classical distribution. However, these
two distributions have the same functional shape, except
that T is replaced by Teff in Eq. (19). Therefore, as also
confirmed in experiments [11], one can use the classical
formula for the threshold of the phase-locking transition at low
temperatures, when starting from quantum-mechanical initial
conditions.

B. Dynamics in the rotating frame

Here we further expand our discussion of the classical
AR limit in our system via the Wigner representation in the
rotating frame. The transformation to the rotating frame is
accomplished using unitary transformation (see [22]) U =
exp(−iâ†âϕd ), where the operator â = (2mh̄ω0)−

1
2 (mω0x +

ip) and ϕd = ∫
ωddt is the driving phase [see Eq. (1)]. Then,

by neglecting rapidly oscillating terms, the Hamiltonian (1) is
transformed to

H̃ = U †HU − ih̄U †U̇ ≈ h̄

λ

√
αG, (22)

where

G = τ

2
(Q2 + P 2) − 1

4
(Q2 + P 2)2 + μQ. (23)

The parameter μ =√
3β

32ω0
ε

mα3/4 = 1
2 P1

√
P2 in the last equation is

familiar from the theory of the classical AR [15], while λ =
3h̄β

8m
√

α
= 1

2P2 is the dimensionless Planck constant, entering
the commutation relation for the rescaled variables,

[Q,P ] = iλ. (24)

Here Q = L̃−1(x cos ϕd + p

mω0
sin ϕd ), P = L̃−1( p

mω0
cos ϕd

− x sin ϕd ), where L̃2 = h̄/(mω0λ), and the dimensionless
time associated with the dynamics governed by Hamiltonian
(23) is τ = √

αt .
Next, we write the quantum Liouville equation in the

rotating frame (see Ref. [23] for similar developments for
a constant frequency drive),

∂f

∂τ
+ ∂G

∂P

∂f

∂Q
− ∂G

∂Q

∂f

∂P
= λ2

4
D̂f , (25)

where D̂ = (Q ∂
∂P

− P ∂
∂Q

)( ∂2

∂Q2 + ∂2

∂P 2 ). The initial Wigner

distribution (19) in the new variables is

f0(Q,P ) = 1

2πσ 2
e
− Q2+P 2

2σ2 , (26)

where σ 2 = λkBTeff
h̄ω0

= λ
2 coth( h̄ω0

2kBT
). The left-hand side of

Eq. (25) is identical to the Vlasov equation describing the
evolution of a classical distribution of particles governed by

Hamiltonian (23) without collisions and self-fields. Hence, as
in the fixed frame, after coarse-graining the fast phase-space
oscillations of f in the limit λ → 0 (P2 � 1), the dynamics in
phase space can be treated classically [21]. Therefore, both
the threshold and the width of the autoresonant transition
can be calculated from the classical theory as illustrated in
Figs. 4 and 5, respectively, despite the quantum-mechanical
initial conditions in the problem. In other words, P2 is the
measure of the classicality of the phase-locking transition in
our chirped oscillator. Furthermore, in the limit of P2 � 1,
only two parameters, μ = 1

2P1P
1/2
2 and Teff (via the initial

conditions) fully characterize the AR transition. This result is
in agreement with Eqs. (13) and (15) for the AR threshold and
its width, where, remarkably, μ and Teff enter separately.

VI. CONCLUSIONS

In conclusion, (a) we have studied the interrelation be-
tween the quantum-mechanical and classical dynamics of the
phase-locking transition in a Duffing oscillator driven by a
chirped-frequency oscillation. We studied the conditions for
a continuous phase locking in the driven system, such that
the energy of the oscillator grows to stay in resonance with
the varying driving frequency. The problem was defined by
the temperature T and three parameters, i.e., the driving
amplitude ε, the driving frequency chirp rate α, and the
parameter β characterizing the nonlinearity of the oscillator.
The nonlinearity in the problem was essential, since no
persistent phase locking in the system could be achieved for
β = 0.

(b) We have exploited a more natural representation of
both the quantum-mechanical and classical dynamics in the
problem via just two dimensionless parameters [12], P1 =
ε/

√
2mh̄ω0α and P2 = (3h̄β)/(4m

√
α), instead of ε, α, and

β. We have shown that P2 describes the classicality of the
phase-locking transition in the system, such that, for P2 �
1, the system arrives at its classical autoresonant (AR) state
after passage through linear resonance, even when starting in
the quantum-mechanical ground state. In contrast, for P2 �
P1 + 1, the transition involves the energy ladder climbing (LC)
process, i.e., a continuing sequence of separated Landau-Zener
transitions between neighboring energy levels. The parameters
P1 and P2 have a meaning only in the case of a finite chirp
rate, which introduces a new time scale, TS = 1/

√
α, in the

problem.
(c) The probability of transition to the phase-locked state

versus P1 has a characteristic S shape (a smoothed step
function). The value of P1 yielding 50% transition probability
can be viewed as the threshold for the phase-locking transition.
We have calculated this threshold and its width in both
the quantum-mechanical LC and classical AR limits and
compared the results to those from quantum-mechanical
calculations starting in the ground state of the oscillator (see
Figs. 4 and 5). We have found that, while in the LC limit the
threshold is independent of P2, in the classical AR regime,
the threshold is defined by the combination μ = 1

2P1P
1/2
2 of

parameters. The agreement of the theory and simulations in
both limits was excellent, but characteristic oscillations of the
threshold and the width were observed in the intermediate
regime 1 < P2 < 5.
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(d) We have also studied the dynamics of the phase-locking
transition in phase space by using the Wigner function
representation to explain the quantum saturation of the width
of the threshold for AR transitions. The analysis of the
Wigner (quantum Liouville) equation in the chirped rotating
frame clarifies the role of P2 as characterizing the degree of
classicality in the phase-locking transition problem.

(e) A possibility of engineering and control of a desired
quantum state of the oscillator via the ladder climbing process

(see an example in Fig. 1) seems to be attractive in such
applications as quantum computing. A generalization of this
study to include possible decay, decoherence, and tunneling
processes also seems to be important in future studies.
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